Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break.

نویسندگان

  • L F Liu
  • C C Liu
  • B M Alberts
چکیده

The T4 DNA topoisomerase is a recently discovered multisubunit protein that appears to have an essential role in the initiation of T4 bacteriophage DND replication. Treatment of double-stranded circular DNA with large amounts of this topoisomerase in the absence of ATP yields new DNA species which are knotted topological isomers of the double-stranded DNA circle. These knotted DNA circles, whether covalently closed or nicked, are converted to unknotted circles by treatment with trace amounts of the T4 topoisomerase in the presence of ATP. Very similar ATP-dependent enzyme activities capable of unknotting DNA are present in extracts of Drosophila eggs. Xenopus laevis eggs and mammalian tissue culture cells. The procaryotic enzyme, DNA gyrase, is also capable of unknotting DNA. We propose that these unknotting enzymes constitute a new general class of DNA topoisomerases (type II DNA topoisomerases). These enzymes must act via mechanisms that involve the concerted cleavage and rejoining of two opposite DNA strands, such that the DNA double helix is transiently broken. The passage of a second double-stranded DNA segment through this reversible double-strand break results in a variety of DNA topoisomerization reactions, including relaxation:super-coiling; knotting:unknotting and catenation:decatenation. In support of this type of mechanism, we demonstrate that the T4 DNA topoisomerase changes the linking number of a covalently closed double-stranded circular DNA molecule only by multiples of two. We discuss the possible roles of such enzymes in a variety of biological functions, along with their probable molecular mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer Modeling of Dna Unknotting by Type Ii Topoisomerases

Type II topoisomerases (Topo II) are essential enzymes common to all organisms. Their cellular functions include maintaining the levels of chromosome supercoiling and ensuring proper segregation at cell division. Topo II performs strand passage on its substrate DNA. This action has been well characterized at the molecular level [2]. Topo II binds a dsDNA segment called the G-segment, it introdu...

متن کامل

Topo2008: DNA Topoisomerases in Biology and Medicine

The DNA topoisomerases are a group of fascinating enzymes that play an essential but dangerous game with DNA. They break and rejoin either one or both strands of the double helix to solve the problems of tangling and linking that occur as a result of DNA manipulations (replication, transcription and recombination) in all cells. This basic problem with the DNA structure was recognized by Watson ...

متن کامل

Random state transitions of knots: a first step towards modeling unknotting by type II topoisomerases.

Type II topoisomerases are enzymes that change the topology of DNA by performing strand-passage. In particular, they unknot knotted DNA very efficiently. Motivated by this experimental observation, we investigate transition probabilities between knots. We use the BFACF algorithm to generate ensembles of polygons in Z(3) of fixed knot type. We introduce a novel strand-passage algorithm which gen...

متن کامل

Structural studies of type I topoisomerases

Topoisomerases are ubiquitous proteins found in all three domains of life. They change the topology of DNA via transient breaks on either one or two of the DNA strands to allow passage of another single or double DNA strand through the break. Topoisomerases are classified into two types: type I enzymes cleave one DNA strand and pass either one or two DNA strands through the break before reseali...

متن کامل

Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification

Type IIA topoisomerases modify DNA topology by passing one segment of duplex DNA (transfer or T-segment) through a transient double-strand break in a second segment of DNA (gate or G-segment) in an ATP-dependent reaction. Type IIA topoisomerases decatenate, unknot and relax supercoiled DNA to levels below equilibrium, resulting in global topology simplification. The mechanism underlying this no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 1980